金榜之路
学大陪你
个性化辅导
关于我们  |  联系我们

高一数学教案课文-二次函数的性质与图像教案

来源:学大教育     时间:2015-10-22 16:53:11


二次函数的性质与图像是高中数学的重要知识点,就为老师准备了一些教案。下面是学大教育为大家准备的高一数学教案课文-二次函数的性质与图像教案,大家把握一下重点内容。

教学分析

二次函数是作为全面介绍函数的第一个例子出现的.本节教材从三个递进的问题开始:1.解决二次函数的形状问题;2.解决其移动问题;3.解决配方问题.在教师引导和学生动手的基础上,围绕三个问题,每走一步都抽象概括,再明晰一次.

这部分教材,信息技术大有用武之地.可以充分利用信息技术的动态特点,画出各种曲线族,把变化极其形象地表现出来,以便使学生掌握二次函数中各参数的变化对图像的影响.

三维目标

理解在二次函数的图像中a,b,c,h,k的作用,掌握研究二次函数移动的方法,能够熟练地对二次函数图像的上下左右移动,并能迁移到其他函数,培养学生变换作图的能力.

重点难点

教学重点:二次函数图像的变换.

教学难点:将二次函数图像的上下左右移动迁移到其他函数. 课时安排 1课时

教学过程

导入新课

思路1.在初中,我们已经学过了二次函数,知道其图像为抛物线,并了解其图像的开口方向、对称轴、顶点等特征,本节课进一步研究一般的二次函数的性质,引出课题.

思路2.高考试题中,有关二次函数的题目经常出现,二次函数是高中数学最重要的函数,因此有必要对二次函数的图像和性质进行深入学习,教师引出课题.

推进新课 新知探究 提出问题

①请回顾二次函数的定义.

②二次函数的解析式有几种形式?

③二次函数的图像是什么形状?如何快速画出其草图? 讨论结果

①一般地,函数y=ax2

+bx+c( a,b,c为常数且a≠0)叫作二次函数.其中自变量的最高次数是2,自变量取值范围即函数的定义域是全体实数.

②有三种形式:

一般式:y=ax2

+bx+c(a≠0);

顶点式:y=a(x-h)2

+k(a≠0); 零点式:y=a(x-x1)(x-x2)(a≠0).

注意:任意二次函数的解析式均有一般式和顶点式,但是不一定有零点式.当且仅当二次函数的图像与x轴相交时,二次函数的解析式才有零点式.

③二次函数的图像是抛物线.画抛物线的草图时,通常根据“三点一线一开口”来画.“三点”是指:顶点,抛物线与x轴的两个交点;“一线”是指对称轴这条直线,“一开口”是指抛物线的开口方向,根据抛物线的这些特征描出其草图.如果抛物线与x轴仅有一个交点或没有交点时,可以先在抛物线上任取一点(除顶点),再作出此点关于抛物线对称轴的对称点,这两个点和顶点合起来组成“三点”.

课堂小结

本节学习了:

(1)二次函数的解析式及其求法. (2)变换法画二次函数的图像.

作业

习题2—4A组2、3、4.

以上就是有关高一数学教案课文-二次函数的性质与图像教案的全部内容,希望对大家学习课文二次函数的性质与图像有所帮助,感谢你的观看!

网站地图 | 全国免费咨询热线: | 服务时间:8:00-23:00(节假日不休)

违法和不良信息举报电话:400-810-5688 举报邮箱:info@xueda.com 网上有害信息举报专区

京ICP备10045583号-6 学大Xueda.com 版权所有 北京学大信息技术集团有限公司 京公网安备 11010502031324号

增值电信业务经营许可证京B2-20100091 电信与信息服务业务经营许可证京ICP证100956